
AMD GPU Performance API 1 of 34

User Guide

AMD GPU Performance API

1 Introduction
The GPU Performance API (GPUPerfAPI, or GPA) is a powerful tool to help analyze the
performance and execution characteristics of applications using the GPU.

This API:

• Supports DirectX10, DirectX11, and OpenGL on ATI Radeon™ 2000 series and newer
graphics cards.

• Supports OpenCL on ATI Radeon™ 4000 series and newer graphics cards.

• Supports Microsoft Windows as a static library or as a dynamically loaded library.

• Supports Linux as a shared object library:

– Targeting Ubuntu 10.04

– OpenCL and OpenGL only

• Provides derived counters based on raw HW performance counters.

• Manages memory automatically – no allocations required.

• Requires ATI Catalyst™ driver 10.1 or later.

2 Usage
For DirectX10 and DirectX11, your application must run with administrator privileges, or UAC
must be turned off so the counters can be accessed in the drivers.

2.1 Static Library

Using the static library option is great for applications that support a single API. To integrate
GPUPerfAPI as a static library:

1. Include the header file GPUPerfAPI.h.

2. Link your application with the static library for your chosen API.

3. Use the functions directly to profile your application.

2 of 34 AMD GPU Performance API

2.2 Dynamically Loaded Library

For applications that support multiple APIs, this approach ensures that you can easily profile each
API.

1. Include the header file GPUPerfAPI.h.

2. Include the header file GPUPerfAPIFunctionTypes.h.

3. Define instances of each of the function types.

4. Call LoadLibrary(...) on the GPUPerfAPI.dll for your chosen API.

5. For each function in GPUPerfAPI, call GetProcAddress(...).

6. Use the functions to profile your application.

2.3 Shared Object Library

For a shared-object library,

1. Include the header file GPUPerfAPI.h.

2. Include the header file GPUPerfAPIFunctionTypes.h.

3. Define instances of each of the function types.

4. Call dlopen(...) on libGPUPerfAPICL.so or libGPUPerfAPIGL.so.

5. For each function in GPUPerfAPI, call dlsym(...).

6. Use the functions to profile your application.

2.4 Initializing the GPUPerfAPI

The API must be initialized before the rendering context or device is created so that the driver
can be prepared for accessing the counters.
GPA_Status GPA_Initialize();

After the context or device is created, the counters can be opened on the given context.
GPA_Status GPA_OpenContext (void* context);

The supplied context must either point to a DirectX device, be the handle to the OpenGL
rendering context, or the OpenCL command queue handle. The return value indicates whether
or not the current hardware is supported by GPUPerfAPI. See Section 6, “API Functions,”
page 14, for more information on individual entry points and return values.

2.5 Obtaining Available Counters

To determine the number of available counters, call:
GPA_Status GPA_GetNumCounters(gpa_uint32* count);

To retrieve the name of a counter, call:
GPA_Status GPA_GetCounterName(gpa_uint32 index, const char** name);

To retrieve the index for a given counter name, call:
GPA_Status GPA_GetCounterIndex(const char* counter, gpa_uint32* index);

AMD GPU Performance API 3 of 34

2.6 Retrieving Information About the Counters

To retrieve a description about a given counter, call:

GPA_Status GPA_GetCounterDescription(gpa_uint32 index, const char** description);

To retrieve the data type of the counter (gpa_float32, gpa_float64, gpa_uint32, gpa_uint64),
call:

GPA_Status GPA_GetCounterDataType(gpa_uint32 index, GPA_Type* dataType);

To retrieve the usage type of the counter (percentage, byte, milliseconds, ratio, items, etc.), call:

GPA_Status GPA_GetCounterUsageType(gpa_uint32 index, GPA_Usage_Type usageType);

2.7 Enabling Counters

By default, all counters are disabled and must be explicitly enabled. To enable a counter given
its index, call:
GPA_Status GPA_EnableCounter(gpa_uint32 index);

To enable a counter given its name, call:
GPA_Status GPA_EnableCounterStr(const char* counter);

To enable all available counters, call:
GPA_Status GPA_EnableAllCounters();

2.8 Disabling Counters

Disabling counters can reduce data collection time. To disable a counter given its index, call:
GPA_Status GPA_DisableCounter(gpa_uint32 index);

To disable a counter given its name, call:
GPA_Status GPA_DisableCounterStr(const char* counter);

To disable all enabled counters, call:
GPA_Status GPA_DisableAllCounters();

2.9 Multi-Pass Profiling

The set of counters that can be sampled concurrently is dependent on the hardware and the API.
Not all counters can be collected at once (in a single pass). A pass is defined as a set of
operations to be profiled. To query the number of passes required to collect the current set of
enabled counters, call:

GPA_Status GPA_GetPassCount(gpa_uint32* numPasses);

If multiple passes are required, the set of operations executed in the first pass must be repeated
for each additional pass. If it is impossible or impractical to repeat the operations to be profiled,

4 of 34 AMD GPU Performance API

select a counter set requiring only a single pass. For sets requiring more than one pass, results
are available only after all passes are complete.

2.10 Sampling Counters

A profile with a given set of counters is called a Session. The counter selection cannot change
within a session. GPUPerfAPI generates a unique ID for each session, which later is used to
query the results of the session. Sessions are identified by begin/end blocks:

GPA_Status GPA_BeginSession(gpa_uint32* sessionID);

GPA_Status GPA_EndSession();

More than one pass may be required, depending on the set of enabled counters. A single session
must contain all the passes needed to complete the counter collection. Each pass is also
identified by begin/end blocks:

GPA_Status GPA_BeginPass();

GPA_Status GPA_EndPass();

Each pass, and each session, can contain one or more samples. Each sample is a data point
for which a set of counter results is returned. All enabled counters are collected within begin/end
blocks:

GPA_Status GPA_BeginSample(gpa_uint32 sampleID);

GPA_Status GPA_EndSample();

Each sample must have a unique identifier within the pass so that the results of the individual
sample can be retrieved. If multiple passes are required, use the same identifier for the first
sample of each pass; each additional sample must use its unique identifier, thus relating the same
sample from each pass.

The following example collects a set of counters for two data points:

BeginSession
BeginPass

BeginSample(1)
<Operations for data point 1>

EndSample
BeginSample(2)

<Operations for data point 2>
EndSample

EndPass
EndSession

AMD GPU Performance API 5 of 34

If multiple passes are required:

BeginSession
BeginPass

BeginSample(1)
<Operations for data point 1>

EndSample
BeginSample(2)

<Operations for data point 2>
EndSample

EndPass
BeginPass

BeginSample(1)
<Identical operations for data point 1>

EndSample
BeginSample(2)

<Identical operations for data point 2>
EndSample

EndPass
EndSession

NOTE: The GPUPerfAPI uses the OpenGL GL_EXT_timer_query / GL_ARB_timer_query
extensions to access the GPUTime counter. These extensions ensure that only one
GL_TIME_ELAPSED query can be active at any time. A query cannot be generated when other
query types are active. For this reason, GPUPerfAPI automatically starts and stops existing
queries, as needed, to ensure that the GPUTime measurements are accurate. However, active
queries may return invalid results if calls to BeginSample / EndSample are between the
glBeginQuery and glEndQuery API calls.

2.11 Counter Results

Results for a session can be retrieved after EndSession has been called and before the counters
are closed. The unique sessionID provided by GPUPerfAPI can be used to query if the session
is available, without stalling the pipeline to wait for the results:

GPA_Status GPA_IsSessionReady(bool* readyResult, gpa_uint32 sessionID);

Similarly, the sampleID that was provided at each BeginSample call can be used to check if
individual sample results are available without stalling the pipeline:

GPA_Status GPA_IsSampleReady(bool* readyResult, gpa_uint32 sessionID, gpa_uint32
sampleID);

Once the results are available, the following calls can be used to retrieve the results. These are
blocking calls, so if you are continuously collecting data, it is important to call these as few times
as possible to avoid stalls and overhead.

GPA_Status GPA_GetSampleUInt32(gpa_uint32 sessionID, gpa_uint32 sampleID,
gpa_uint32 counterID, gpa_uint32* result);

GPA_Status GPA_GetSampleUInt64(gpa_uint32 sessionID, gpa_uint32 sampleID,
gpa_uint32 counterID, gpa_uint64* result);

GPA_Status GPA_GetSampleFloat32(gpa_uint32 sessionID, gpa_uint32 sampleID,
gpa_uint32 counterID, gpa_float32* result);

GPA_Status GPA_GetSampleFloat64(gpa_uint32 sessionID, gpa_uint32 sampleID,
gpa_uint32 counterID, gpa_float64* result);

6 of 34 AMD GPU Performance API

2.12 Result Buffering

The GPUPerfAPI buffers an API-dependent number of sessions (at least four). When more
sessions are sampled, the oldest session results are replaced by new ones. Usually, this is not
an issue, because the availability of results is checked regularly by your application. Ensure that
your application checks the results more frequently than the number of buffered session. This
prevents previous sessions from becoming unavailable. If a session is unavailable,
GPA_STATUS_ERROR_SESSION_NOT_FOUND is returned.

2.13 Closing GPUPerfAPI

To stop the currently selected context from using the counters, call:

GPA_Status GPA_CloseContext();

After your application has released all rendering contexts or devices, GPUPerfAPI must disable
the counters so that performance of other applications is not affected. To do so, call:

GPU_Status_GPA_Destroy();

3 Example Code
This sample shows the code for:

• Initializing the counters.

• Sampling all the counters for two draw calls every frame.

• Writing out the results to a file when they become available.

• Shutting down the counters.

3.1 Startup

Open the counter system on the current Direct3D device, and enable all available counters. If
using OpenGL, pass the handle to the GL context into the OpenContext function; for OpenCL,
the command queue handle should be supplied.

GPA_Initialize();
D3D10CreateDeviceAndSwapChain(. . . &g_pd3dDevice);
GPA_OpenContext(g_pd3dDevice);
GPA_EnableAllCounters();

3.2 Render Loop

At the start of the application's rendering loop, begin a new session, and begin the GPUPerfAPI
pass loop to ensure that all the counters are queried. Sample one or more API calls before
ending the pass loop and ending the session. After the session results are available, save the
data to disk for later analysis.

AMD GPU Performance API 7 of 34

static gpa_uint32 currentWaitSessionID = 1;

gpa_uint32 sessionID;
GPA_BeginSession(&sessionID);

gpa_uint32 numRequiredPasses;
GPA_GetPassCount(&numRequiredPasses);

for (gpa_uint32 i = 0; i < numRequiredPasses; i++)

{

GPA_BeginPass();

GPA_BeginSample(0);
<API function call>

GPA_EndSample();

GPA_BeginSample(1);
<API function call>

GPA_EndSample();

GPA_EndPass();

GPA_EndSession();

}

bool readyResult = false;
if (sessionID != currentWaitSessionID)
{

GPA_Status sessionStatus;
sessionStatus = GPA_IsSessionReady(&readyResult,

currentWaitSessionID);

while (sessionStatus == GPA_STATUS_ERROR_SESSION_NOT_FOUND)
{

// skipping a session which got overwritten
currentWaitSessionID++;
sessionStatus = GPA_IsSessionReady(&readyResult,

currentWaitSessionID);
}

}

if (readyResult)
{

WriteSession(currentWaitSessionID,
"c:\\PublicCounterResults.csv");

currentWaitSessionID++;
}

3.3 On Exit

Ensure that the counter system is closed before the application exits.

GPA_CloseContext();
g_pd3dDevice->Release();
GPA_Destroy();

4 Counter Groups
The counters exposed through GPU Performance API are organized into groups to help provide
clarity and organization to all the available data.

It is recommended you initially profile with counters from the Timing group to determine whether
the profiled calls are worth optimizing (based on GPUTime value), and which parts of the pipeline

8 of 34 AMD GPU Performance API

are performing the most work. Note that because the GPU is highly parallelized, various parts of
the pipeline can be active at the same time; thus, the “Busy” counters probably will sum over 100
percent. After identifying one or more stages to investigate further, enable the corresponding
counter groups for more information on the stage and whether or not potential optimizations exist.

Group Counters Group Counters

Timing DepthStencilTestBusy
GPUTime
GPUBusy
InterpBusy
PrimitiveAssemblyBusy
ShaderBusy
ShaderBusyCS
ShaderBusyDS
ShaderBusyGS
ShaderBusyHS
ShaderBusyPS
ShaderBusyVS
TessellatorBusy
TexUnitBusy

GeometryShader GSALUBusy
GSALUEfficiency
GSALUInstCount
GSALUTexRatio
GSExportPct
GSPrimsIn
GSTexBusy
GSTexInstCount
GSVerticesOut

VertexShader VertexMemFetched
VertexMemFetchedCost
VSALUBusy
VSALUEfficiency
VSALUInstCount
VSALUTexRatio
VSTexBusy
VSTexInstCount
VSVerticesIn

PrimitiveAssembly ClippedPrims
CulledPrims
PAPixelsPerTriangle
PAStalledOnRasterizer
PrimitivesIn

HullShader1 HSALUBusy
HSALUEfficiency
HSALUInstCount
HSALUTexRatio
HSTexBusy
HSTexInstCount
HSPatches

DomainShader1 DSALUBusy
DSALUEfficiency
DSALUInstCount
DSALUTexRatio
DSTexBusy
DSTexInstCount
DSVerticesIn

PixelShader PSALUBusy
PSALUEfficiency
PSALUInstCount
PSALUTexRatio
PSExportStalls
PSPixelsIn
PSPixelsOut
PSTexBusy
PSTexInstCount

ComputeShader1 CSALUBusy
CSALUFetchRatio
CSALUInsts
CSALUPacking
CSALUStalledByLDS
CSCacheHit
CSCompletePath
CSFastPath
CSFetchInsts
CSLDSBankConflict
CSLDSFetchInsts
CSLDSWriteInsts
CSPathUtilization
CSTexBusy
CSThreads
CSWavefronts
CSWriteInsts

AMD GPU Performance API 9 of 34

5 Counter Descriptions
The GPU Performance API supports many hardware counters and attempts to maintain the same
set of counters across all supported graphics APIs and all supported hardware generations. In
some cases, this is not possible because either features are not available in certain APIs or the
hardware evolves through the generations. The following table lists all the supported counters,
along with a brief description that can be queried through the API. To clearly define the set of
counters, they have been separated into sections based on the which APIs contain the counters
and the hardware version on which they are available.

TextureUnit TexAveAnisotropy
TexCacheStalled
TexCostOfFiltering
TexelFetchCount
TexMemBytesRead
TexMissRate
TexTriFilteringPct
TexVolFilteringPct

DepthAndStencil HiZReject
HiZTrivialAccept
PostZSamplesFailingS
PostZSamplesFailingZ
PostZSamplesPassing
PreZSamplesFailingS
PreZSamplesFailingZ
PreZSamplesPassing
ZUnitStalled

TextureFormat Pct64SlowTexels
Pct128SlowTexels
PctCompressedTexels
PctDepthTexels
PctInterlacedTexels
PctTex1D
PctTex1Darray
PctTex2D
PctTex2Darray
PctTex2DMSAA
PctTex2DMSAAArray
PctTex3D
PctTexCube
PctTexCubeArray
PctUncompressedTexels
PctVertex64SlowTexels
PctVertex128SlowTexels
PctVertexTexels

ColorBuffer2 CBMemRead
CBMemWritten
CBSlowPixelPct

General3 ALUBusy
ALUFetchRatio
ALUInsts
ALUPacking
FetchInsts
LDSFetchInsts
LDSWriteInsts
Wavefronts
WriteInsts

GlobalMemory3 CompletePath
FastPath
FetchSize
FetchUnitBusy
FetchUnitStalled
CacheHit
PathUtilization
WriteUnitStalled

LocalMemory3 ALUStalledByLDS
LDSBankConflict

1. Available only for ATI Radeon™ HD 5000 series graphic cards.
2. Available only on ATI Radeon™ HD 4000 and 5000 series graphics cards.
3. Exposed only by the OpenCL version of the GPU Performance API.

Group Counters Group Counters

10 of 34 AMD GPU Performance API

Counter Description

Common to DX and GL on All Supported Graphics Cards

ClippedPrims The number of primitives that required one or more clipping operations due to intersecting the view
volume or user clip planes.

CulledPrims The number of culled primitives. Typical reasons include scissor, the primitive having zero area, and
back or front face culling.

DepthStencilTestBusy Percentage of GPUTime spent performing depth and stencil tests.

GPUBusy Percentage of time GPU was busy

GPUTime Time, in milliseconds, this API call took to execute on the GPU. Does not include time that draw calls
are processed in parallel.

GSALUBusy The percentage of GPUTime ALU instructions are processed by the GS.

GSALUEfficiency ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

GSALUInstCount Average number of ALU instructions executed in GS. Affected by the flow control.

GSALUTexRatio The ratio of ALU to texture instructions in the GS. This can be tuned appropriately to match the target
hardware.

GSExportPct The percentage of GS work that is related to exporting primitives.

GSPrimsIn The number of primitives passed into the GS.

GSTexBusy The percentage of GPUTime texture instructions are processed by the GS.

GSTexInstCount Average number of texture instructions executed in GS. Affected by the flow control.

GSVerticesOut The number of vertices output by the GS.

HiZReject Percentage of tiles that are rejected by HiZ.

HiZTrivialAccept Percentage of tiles that can be accepted by HiZ without doing per-pixel Z tests.

PAStalledOnRasterizer Percentage of GPUTime that primitive assembly waits for rasterization to be ready to accept data.
This roughly indicates the percentage of time the pipeline is bottlenecked by pixel operations.

Pct128SlowTexels Percentage of texture fetches from a 128-bit texture (slow path). There also are 128-bit formats that
take a fast path; they are included in PctUncompressedTexels.

PctCompressedTexels Percentage of texture fetches from compressed textures.

PctDepthTexels Percentage of texture fetches from depth textures.

PctInterlacedTexels Percentage of texture fetches from interlaced textures.

PctTex1D Percentage of texture fetches from a 1D texture.

PctTex1DArray Percentage of texture fetches from a 1D texture array.

PctTex2D Percentage of texture fetches from a 2D texture.

PctTex2DArray Percentage of texture fetches from a 2D texture array.

PctTex2DMSAA Percentage of texture fetches from a 2D MSAA texture.

PctTex2DMSAAArray Percentage of texture fetches from a 2D MSAA texture array.

PctTex3D Percentage of texture fetches from a 3D texture.

PctTexCube Percentage of texture fetches from a cube map.

PctUncompressedTexels Percentage of texture fetches from uncompressed textures. Does not include depth or interlaced
textures.

PostZSamplesFailingS Number of samples tested for Z after shading and failed stencil test.

PostZSamplesFailingZ Number of samples tested for Z after shading and failed Z test.

PostZSamplesPassing Number of samples tested for Z after shading and passed.

PreZSamplesFailingS Number of samples tested for Z before shading and failed stencil test.

AMD GPU Performance API 11 of 34

PreZSamplesFailingZ Number of samples tested for Z before shading and failed Z test.

PreZSamplesPassing Number of samples tested for Z before shading and passed.

PrimitiveAssemblyBusy Percentage of GPUTime that primitive assembly (clipping and culling) is busy. High values may be
caused by having many small primitives; mid to low values may indicate pixel shader or output buffer
bottleneck.

PrimitivesIn The number of primitives received by the hardware.

PSALUBusy The percentage of GPUTime ALU instructions are processed by the PS.

PSALUEfficiency ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

PSALUInstCount Average number of ALU instructions executed in PS. Affected by the flow control.

PSALUTexRatio The ratio of ALU to texture instructions in the PS. This can be tuned appropriately to match the target
hardware.

PSExportStalls Percentage of GPUTime that PS output is stalled. Should be zero for PS or further upstream limited
cases; if not zero, indicates a bottleneck in late z testing or in the color buffer.

PSPixelsIn The number of pixels processed by the PS. Does not count pixels culled out by early z or stencil
tests.

PSPixelsOut The number of pixels exported from shader to color buffers. Does not include killed or alpha-tested
pixels. If there are multiple render targets, each receives one export, so this is 2 for 1 pixel written
to two RTs.

PSTexBusy The percentage of GPUTime texture instructions are processed by the PS.

PSTexInstCount Average number of texture instructions executed in the PS. Affected by the flow control.

ShaderBusy The percentage of GPUTime that the shader unit is busy.

ShaderBusyGS The percentage of work done by shader units for GS.

ShaderBusyPS The percentage of work done by shader units for PS.

ShaderBusyVS The percentage of work done by shader units for VS.

TexAveAnisotropy The average degree (between 1 and 16) of anisotropy applied. The anisotropic filtering algorithm
only applies samples where they are required (there are no extra anisotropic samples if the view
vector is perpendicular to the surface), so this can be much lower than the requested anisotropy.

TexCacheStalled Percentage of GPUTime the texture cache is stalled. Try reducing the number of textures or reducing
the number of bits per pixel (use compressed textures), if possible.

TexCostOfFiltering The effective cost of all texture filtering. Percentage indicating the cost relative to all bilinear filtering.
Should always be greater than, or equal to, 100 percent. Significantly higher values indicate heavy
usage of trilinear or anisotropic filtering.

TexelFetchCount The total number of texels fetched. This includes all shader types, and any extra fetches caused by
trilinear filtering, anisotropic filtering, color formats, and volume textures.

TexMemBytesRead Texture memory read in bytes.

TexMissRate Texture cache miss rate (bytes/texel). A normal value for mipmapped textures on typical scenes is
approximately (texture_bpp / 4). For 1:1 mapping, it is texture_bpp.

TexTriFilteringPct Percentage of pixels that received trilinear filtering. Note that not all pixels for which trilinear filtering
is enabled receive it (for example, if the texture is magnified).

TexUnitBusy Percentage of GPUTime the texture unit is active. This is measured with all extra fetches and any
cache or memory effects taken into account.

TexVolFilteringPct Percentage of pixels that received volume filtering.

VertexMemFetched Number of bytes read from memory due to vertex cache miss.

VSALUBusy The percentage of GPUTime ALU instructions are processed by the VS.

VSALUEfficiency ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

VSALUInstCount Average number of ALU instructions executed in the VS. Affected by the flow control.

Counter Description

12 of 34 AMD GPU Performance API

VSALUTexRatio The ratio of ALU to texture instructions in the VS. This can be tuned appropriately to match the target
hardware.

VSTexBusy The percentage of GPUTime texture instructions are processed by the VS.

VSTexInstCount Average number of texture instructions executed in VS. Affected by the flow control.

VSVerticesIn The number of vertices processed by the VS.

ZUnitStalled Percentage of GPUTime the depth buffer spends waiting for the color buffer to be ready to accept
data. High figures here indicate a bottleneck in color buffer operations.

Common to DX and GL on 2000, 3000, and 4000 Series Graphics Cards

InterpBusy Percentage of GPUTime that the interpolator is busy.

Common to DX and GL on 4000 and 5000 Series Graphics Cards

CBMemRead Number of bytes read from the color buffer.

CBMemWritten Number of bytes written to the color buffer.

CBSlowPixelPct Percentage of pixels written to the color buffer using a half-rate or quarter-rate format.

Pct64SlowTexels Percentage of texture fetches from a 64-bit texture (slow path). There are also 64-bit formats that
take a fast path; they are included in PctUncompressedTexels.

PctTexCubeArray Percentage of texture fetches from a cube map array.

PctVertex64SlowTexels Percentage of texture fetches from a 64-bit vertex texture (slow path). There are also 64-bit formats
that take a fast path; they are included in PctVertexTexels.

PctVertex128SlowTexels Percentage of texture fetches from a 128-bit vertex texture (slow path). There are also 128-bit for-
mats that take a fast path; they are included in PctVertexTexels.

PctVertexTexels Percentage of texture fetches from vertex textures.

VertexMemFetchedCost The percentage of GPUTime that is spent fetching from vertex memory due to cache miss. To reduce
this, Improve vertex reuse or use smaller vertex formats.

Common to DX and GL on 5000 Series Graphics Cards

PAPixelsPerTriangle The ratio of rasterized pixels to the number of triangles after culling. This does not account for trian-
gles generated due to clipping.

DSALUBusy The percentage of GPUTime ALU instructions are processed by the DS.

DSALUEfficiency ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

DSALUInstCount Average number of ALU instructions executed in the DS. Affected by flow control.

DSALUTexRatio The ratio of ALU to texture instructions. This can be tuned to match the target hardware.

DSTexBusy The percentage of GPUTime texture instructions are processed by the DS.

DSTexInstCount Average number of texture instructions executed in DS. Affected by the flow control.

DSVerticesIn The number of vertices processed by the DS.

HSALUBusy The percentage of GPUTime ALU instructions processed by the HS.

HSALUEfficiency ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

HSALUInstCount Average number of ALU instructions executed in the HS. Affected by the flow control.

HSALUTexRatio The ratio of ALU to texture instructions. This can be tuned to match the target hardware.

HSTexBusy The percentage of GPUTime texture instructions are processed by the HS.

HSTexInstCount Average number of texture instructions executed in HS. Affected by the flow control.

HSPatches The number of patches processed by the HS.

ShaderBusyDS Percentage of work done by shader units for DS.

ShaderBusyHS Percentage of work done by shader units for HS.

Counter Description

AMD GPU Performance API 13 of 34

TessellatorBusy Percentage of time the tessellation engine is busy.

Specific to DX11 on 5000 Series Graphics Cards

CSALUStalledByLDS The percentage of GPUTime ALU units are stalled by the LDS input queue being full or the output
queue is not ready. If there are LDS bank conflicts, reduce it.; otherwise, try reducing the number of
LDS accesses.

CSALUBusy The percentage of GPU Time ALU instructions are processed by the CS.

CSALUPacking ALU vector packing efficiency. Values below 70 percent indicate that ALU dependency chains may
prevent full use of the processor.

CSALUInsts The number of ALU instructions executed in the CS. Affected by the flow control.

CSALUFetchRatio The ratio of ALU to fetch instructions. This can be tuned to match the target hardware.

CSCompletePath The total bytes read and written through the CompletePath. This includes extra bytes needed for
addressing, atomics, etc. This number indicates a big performance impact (higher number equals
lower performance). Reduce it by removing atomics and non 32-bit types, or move them into a sec-
ond shader.

CSCacheHit The percentage of fetches from the global memory that hit the L1 cache.

CSLDSBankConflict The percentage of GPUTime the LDS is stalled by bank conflicts.

CSLDSBankConflictAccess The percentage of LDS accesses that caused a bank conflict.

CSFastPath The total bytes written through the FastPath (no atomics, 32-bit type only). This includes extra bytes
needed for addressing.

CSFetchInsts The average number of fetch instructions executed in the CS per execution (affected by flow control).

CSLDSFetchInsts The average number of fetch instructions from the local memory executed per thread (affected by
flow control).

CSLDSWriteInsts The average number of write instructions to the local memory executed per thread (affected by flow
control).

CSPathUtilization The percentage of bytes read and written through the FastPath or CompletePath compared to the
total number of bytes transferred over the bus. To increase the path utilization, remove atomics and
non 32-bit types.

CSTexBusy The percentage of GPUTime texture instructions are processed by the CS.

CSThreads The number of CS threads processed by the hardware.

CSWavefronts The total number of wavefronts used for the CS.

CSWriteInsts The average number of write instructions executed in CS per execution (affected by flow control).

ShaderBusyCS Percentage work done by shader units for CS.

Specific to OpenCL on 4000 and 5000 Series Graphics Cards

ALUBusy The percentage of GPUTime ALU instructions are processed.

ALUFetchRatio The ratio of ALU to fetch instructions. If the number of fetch instructions is zero, then one is used
instead.

ALUInsts The average number of ALU instructions executed per work-item (affected by flow control).

ALUPacking The ALU vector packing efficiency (in percentage). This value indicates how well the Shader Com-
piler packs the scalar or vector ALU in your kernel to the 5-way VLIW instructions. Values below 70
percent indicate that ALU dependency chains may be preventing full use of the processor.

FetchInsts The averaged fetch instructions (from global memory) executed per work-item (affected by flow
control).

FetchSize The total kilobytes fetched from the video memory. This is measured with all extra fetches and any
cache or memory effects taken into account.

FetchUnitBusy The percentage of time the Fetch unit is active relative to GPUTime. This is measured with all extra
fetches and any cache or memory effects taken into account.

Counter Description

14 of 34 AMD GPU Performance API

6 API Functions

FetchUnitStalled The percentage of time the Fetch unit is stalled relative to GPUTime. If possible, try to reduce the
number of fetches or reducing the amount per fetch.

CacheHit The percentage of fetches from the video memory that hit the data cache. Value range is 0% (no
hit) to 100% (optimal).

Wavefronts Total wavefronts.

WriteInsts The average number of write instructions (to global memory) executed per work-item (affected by
flow control).

WriteUnitStalled The percentage of time the Write unit is stalled relative to GPUTime.

Specific to OpenCL on 5000 Series Graphics Cards

ALUStalledByLDS The percentage of GPUTime the ALU units are stalled because the LDS input queue is full or the
output queue is not ready. If there are LDS bank conflicts, reduce it; otherwise, try reducing the num-
ber of LDS accesses if possible.

CompletePath The total kilobytes written to the global memory through the CompletePath, which supports atomics
and sub-32 bit types (byte, short). This number includes bytes for load, store, and atomics operations
on the buffer. This number can indicate a large impact on performance (higher number equals lower
performance). If possible, remove the usage of this Path by moving atomics to the local memory or
partition the kernel.

FastPath The total kilobytes written to the global memory through the FastPath. This is an optimized path in
the hardware that only supports basic operations: no atomics or sub-32 bit types.

LDSBankConflict The percentage of GPUTime the LDS is stalled by bank conflicts.

LDSFetchInsts The average number of fetch instructions from the local memory executed per work-item (affected
by flow control).

LDSWriteInsts The average number of write instructions to the local memory executed per work-item (affected by
flow control).

PathUtilization The percentage of bytes written through the FastPath or CompletePath compared to the total number
of bytes transferred over the bus. To increase the path utilization, use FastPath.

Counter Description

Begin Sampling Pass

Syntax GPALIB_DECL GPA_Status GPA_BeginPass ()

Description It is expected that a sequence of repeatable operations exist between BeginPass and EndPass
calls. If this is not the case, activate only counters that execute in a single pass. The number
of required passes can be determined by enabling a set of counters, then calling
GPA_GetPassCount. Loop the operations inside the BeginPass/EndPass calls over
GPA_GetPassCount result number of times.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SAMPLING_NOT_STARTED: GPA_BeginSession must be called before this
call to initialize the profiling session.

GPA_STATUS_ERROR_PASS_ALREADY_STARTED: GPA_EndPass must be called to finish the
previous pass before a new pass can be started.

GPA_STATUS_OK: On success.

AMD GPU Performance API 15 of 34

Begin a Sample Using the Enabled Counters

Syntax GPALIB_DECL GPA_Status GPA_BeginSample (gpa_uint32 sampleID)

Description Multiple samples can be done inside a BeginSession/EndSession sequence. Each sample
computes the values of the counters between BeginSample and EndSample. To identify each
sample, the user must provide a unique sampleID as a parameter to this function. The number
must be unique within the same BeginSession/EndSession sequence. The BeginSample
must be followed by a call to EndSample before BeginSample is called again.

Parameters sampleID Any integer, unique within the BeginSession/EndSession sequence, used to
retrieve the sample results.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SAMPLING_NOT_STARTED: GPA_BeginSession must be called before this
call to initialize the profiling session.

GPA_STATUS_ERROR_PASS_NOT_STARTED: GPA_BeginPass must be called before this call to
mark the start of a profile pass.

GPA_STATUS_ERROR_SAMPLE_ALREADY_STARTED: GPA_EndSample must be called to finish the
previous sample before a new sample can be started.

GPA_STATUS_ERROR_FAILED: The sample could not be started due to an internal error.

GPA_STATUS_OK: On success.

Begin Profile Session with the Currently Enabled Set of Counters

Syntax GPALIB_DECL GPA_Status GPA_BeginSession (gpa_uint32 * sessionID)

Description This must be called to begin the counter sampling process. A unique sessionID is returned,
which later is used to retrieve the counter values. Session identifiers are integers and always
start from 1 on a newly opened context. The set of enabled counters cannot be changed
inside a BeginSession/EndSession sequence.

Parameters sessionID The value to be set to the session identifier.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: A null pointer was suppled as the sessionID parameter. A
reference to a gpa_uint32 value is expected.

GPA_STATUS_ERROR_NO_COUNTERS_ENABLED: No counters were enabled for this session.

GPA_STATUS_ERROR_SAMPLING_ALREADY_STARTED: GPA_EndSession must be called in order to
finish the previous session before a new session can be started.

GPA_STATUS_OK: On success.

16 of 34 AMD GPU Performance API

Close Counters in the Currently Active Context

Syntax GPALIB_DECL GPA_Status GPA_CloseContext ()

Description Counters must be reopened with GPA_OpenContext before using the GPUPerfAPI again.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SAMPLING_NOT_ENDED: GPA_EndSession must be called in order to finish
the previous session before the counters can be closed.

GPA_STATUS_OK: On success.

Undo any Initialization Needed to Access Counters

Syntax GPALIB_DECL GPA_Status GPA_Destroy ()

Description Calling this function after the rendering context or device has been released is important so
that counter availability does not impact the performance of other applications.

Returns GPA_STATUS_FAILED: An internal error occurred.

GPA_STATUS_OK: On success.

Disable All Counters

Syntax GPALIB_DECL GPA_Status GPA_DisableAllCounters ()

Description Subsequent sampling sessions do not provide values for any disabled counters. Initially, all
counters are disabled and must be enabled explicitly.

Parameters sessionID The value to be set to the session identifier.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_OK: On success.

AMD GPU Performance API 17 of 34

Disable a Specified Counter

Syntax GPALIB_DECL GPA_Status GPA_DisableCounter (gpa_uint32 index)

Description Subsequent sampling sessions do not provide values for any disabled counters. Initially, all
counters are disabled and must explicitly be enabled.

Parameters index The index of the counter to enable. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

Returns GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_ERROR_NOT_ENABLED: The supplied index does identify an available counter, but
the counter was not previously enabled, so it cannot be disabled.

GPA_STATUS_OK: On success.

Disable a Specified Counter Using the Counter Name (Case Insensitive)

Syntax GPALIB_DECL GPA_Status GPA_DisableCounterStr (const char * counter)

Description Subsequent sampling sessions do not provide values for any disabled counters. Initially, all
counters are disabled and must explicitly be enabled.

Parameters counter The name of the counter to disable.

Returns GPA_STATUS_ERROR_NULL_POINTER: A null pointer was suppled as the counter parameter.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_ERROR_NOT_FOUND: A counter with the specified name could not be found.

GPA_STATUS_ERROR_NOT_ENABLED: The supplied counter identifies an available counter, but
the counter was not previously enabled, so it cannot be disabled.

GPA_STATUS_OK: On success.

Enable All Counters

Syntax GPALIB_DECL GPA_Status GPA_EnableAllCounters ()

Description Subsequent sampling sessions provide values for all counters. Initially, all counters are
disabled and must explicitly be enabled by calling a function that enables them.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_OK: On success.

18 of 34 AMD GPU Performance API

Enable a Specified Counter

Syntax GPALIB_DECL GPA_Status GPA_EnableCounter (gpa_uint32 index)

Description Subsequent sampling sessions provide values for enabled counters. Initially, all counters are
disabled and must explicitly be enabled by calling this function.

Parameters index The index of the counter to enable. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_ERROR_ALREADY_ENABLED: The specified counter is already enabled.

GPA_STATUS_OK: On success.

Enable a Specified Counter Using the Counter Name (Case Insensitive)

Syntax GPALIB_DECL GPA_Status GPA_EnableCounterStr (const char * counter)

Description Subsequent sampling sessions provide values for enabled counters. Initially, all counters are
disabled and must explicitly be enabled by calling this function.

Parameters counter The name of the counter to enable.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: A null pointer was suppled as the counter parameter.

GPA_STATUS_ERROR_CANNOT_CHANGE_COUNTERS_WHEN_SAMPLING: Counter cannot be disabled
if a session is active.

GPA_STATUS_ERROR_NOT_FOUND: A counter with the specified name could not be found.

GPA_STATUS_ERROR_ALREADY_ENABLED: The specified counter is already enabled.

GPA_STATUS_OK: On success.

AMD GPU Performance API 19 of 34

End Sampling Pass

Syntax GPALIB_DECL GPA_Status GPA_EndPass ()

Description It is expected that a sequence of repeatable operations exist between BeginPass and
EndPass calls. If this is not the case, activate only counters that execute in a single pass. The
number of required passes can be determined by enabling a set of counters and then calling
GPA_GetPassCount. Loop the operations inside the BeginPass/EndPass calls the number of
times specified by the GPA_GetPassCount result. This is necessary to capture all counter
values because counter combinations sometimes cannot be captured simultaneously.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_PASS_NOT_STARTED: GPA_BeginPass must be called to start a pass before
a pass can be ended.

GPA_STATUS_ERROR_SAMPLE_NOT_ENDED: GPA_EndSample must be called to finish the last
sample before the current pass can be ended.

GPA_STATUS_ERROR_VARIABLE_NUMBER_OF_SAMPLES_IN_PASSES: The current pass does not
contain the same number of samples as the previous passes. This can only be returned if the
set of enabled counters requires multiple passes.

GPA_STATUS_OK: On success.

End Sampling Using the Enabled Counters

Syntax GPALIB_DECL GPA_Status GPA_EndSample ()

Description BeginSample must be followed by a call to EndSample before BeginSample is called again.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call
to initialize the counters.

GPA_STATUS_ERROR_SAMPLE_NOT_STARTED: GPA_BeginSample must be called before try to
end a sample.

GPA_STATUS_ERROR_FAILED: An internal error occurred while trying to end the current
sample.

GPA_STATUS_OK: On success.

20 of 34 AMD GPU Performance API

End Sampling with the Currently Enabled Set of Counters

Syntax GPALIB_DECL GPA_Status GPA_EndSampling ()

Description Ends the sampling session so that the counter results can be collected.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call
to initialize the counters.

GPA_STATUS_ERROR_SAMPLING_NOT_STARTED: A session must be started before it can be
ended.

GPA_STATUS_ERROR_PASS_NOT_ENDED: The current pass must be ended before the session
can be ended.

GPA_STATUS_ERROR_NOT_ENOUGH_PASSES: The currently selected set of counter requires
additional passes. The session cannot be ended until the right number of passes have been
completed.

GPA_STATUS_OK: On success.

Get the Counter Data Type of the Specified Counter

Syntax GPALIB_DECL GPA_Status GPA_GetCounterDataType (gpa_uint32 index,
GPA_Type * counterDataType)

Description Retrieves the data type of the counter at the supplied index.

Parameters index The index of the counter. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

counterDataType The value that holds the description upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied counterDataType parameter is null. A
reference to a GPA_Type variable is expected.

GPA_STATUS_OK: On success

AMD GPU Performance API 21 of 34

Get Description of the Specified Counter

Syntax GPALIB_DECL GPA_Status GPA_GetCounterDescription (gpa_uint32 index,
const char ** description)

Description Retrieves a description of the counter at the supplied index.

Parameters index The index of the counter to query. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

description The value that holds the description upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied description parameter is null.

GPA_STATUS_OK: On success.

Get Index of a Counter Given its Name (Case Insensitive)

Syntax GPALIB_DECL GPA_Status GPA_GetCounterIndex (const char * counter,
gpa_uint32 * index)

Description Retrieves a counter index from the string name. Useful for searching the availability of a
specific counter.

Parameters counter The name of the counter to get the index for.

index The index of the requested counter.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied counter or index parameter is null.

GPA_STATUS_ERROR_NOT_FOUND: A counter with the specified name could not be found.

GPA_STATUS_OK: On success.

22 of 34 AMD GPU Performance API

Get the Name of a Specific Counter

Syntax GPALIB_DECL GPA_Status GPA_GetCounterName (gpa_uint32 index, const
char ** name)

Description Retrieves a counter name from a supplied index. Useful for printing counter results in a
readable format.

Parameters index The index of the counter name to query. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

name The value that holds the name upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied name parameter is null.

GPA_STATUS_OK: On success.

Get the Type of the Specified Counter

Syntax GPALIB_DECL GPA_Status GPA_GetCounterType (gpa_uint32 index,
GPA_CounterType * counterType)

Description Retrieves the counter, whether it is static or dynamic. Static counters are not likely to change
between executions of the same API call; dynamic counters may have some variation.

Parameters index The index of the counter. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

counterType The value that holds the description upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call
to initialize the counters.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied counterType parameter is null.

GPA_STATUS_OK: On success.

AMD GPU Performance API 23 of 34

Get the Specified Counter’s Usage Type

Syntax GPALIB_DECL GPA_Status GPA_GetCounterUsageType (gpa_uint32 index,
GPA_Usage_Type * counterUsageType)

Description Retrieves the usage type of the counter at the supplied index.

Parameters index

counterUsageType

The index of the counter. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

The value that holds the description upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPU_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied index does not identify an available
counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied counterDataType parameter is null. A reference
to a GPA_Type variable is expected.

GPA_STATUS_OK: On success.

Get a String with the Name of the Specified Counter Data Type

Syntax GPALIB_DECL GPA_Status GPA_GetDataTypeAsStr (GPA_Type counterDataType,
const char ** typeStr)

Description Typically used to display counter types along with their name (for example, counterDataType
of GPA_TYPE_UINT64 returns gpa_uint64).

Parameters counterDataType The type to get the string for.

typeStr The value set to contain a reference to the name of the counter data type.

Returns GPA_STATUS_ERROR_NOT_FOUND: An invalid counterDataType parameter was supplied.

GPA_STATUS_ERROR_NULL_POINTER: The supplied typeStr parameter is null.

GPA_STATUS_OK: On success.

Get the Number of Enabled Counters

Syntax GPALIB_DECL GPA_Status GPA_GetEnabledCount (gpa_uint32 * count)

Description Retrieves the number of enabled counters.

Parameters count Address of the variable that is set to the number of enabled counters if
GPA_STATUS_OK is returned. This is not modified if an error is returned.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call
to initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied count parameter is null.

GPA_STATUS_OK: On success.

24 of 34 AMD GPU Performance API

Get the Counter Index for an Enabled Counter

Syntax GPALIB_DECL GPA_Status GPA_GetEnabledIndex (gpa_uint32 enabledNumber,
gpa_uint32 * enabledCounterIndex)

Description For example, if GPA_GetEnabledIndex returns 3, then call this function with enabledNumber
equal to 0 to get the counter index of the first enabled counter.

Parameters enabledNumber The number of the enabled counter for which to get the counter
index. Must lie between 0 and (GPA_GetEnabledIndex result - 1),
inclusive.

enabledCounterIndex Contains the index of the counter.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied enabledCounterIndex parameter is null.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied enabledNumber does not identify an
enabled counter.

GPA_STATUS_OK: On success.

Get the Number of Counters Available

Syntax GPALIB_DECL GPA_Status GPA_GetNumCounters (gpa_uint32 * count)

Description Retrieves the number of counters provided by the currently loaded GPUPerfAPI library.
Results can vary based on the current context and available hardware.

Parameters count Holds the count upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call
to initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied count parameter is null.

GPA_STATUS_OK: On success.

Get the Number of Passes Required for the Currently Enabled Set of Counters

Syntax GPALIB_DECL GPA_Status GPA_GetPassCount (gpa_uint32 * numPasses)

Description This represents the number of times the same sequence must be repeated to capture the
counter data. On each pass a different (compatible) set of counters is measured.

Parameters numPasses The value of the number of passes.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied numPasses parameter is null.

GPA_STATUS_OK: On success.

AMD GPU Performance API 25 of 34

Get the Number of Samples a Specified Session Contains

Syntax GPALIB_DECL GPA_Status GPA_GetSampleCount (gpa_uint32 sessionID,
gpa_uint32 * samples)

Description This is useful if samples are conditionally created and a count is not kept.

Parameters sessionID The session for which to get the number of samples for.

samples The number of samples contained within the session.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied samples parameter is null.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an
available session.

GPA_STATUS_OK: On success.

Get a Sample of Type 32-bit Float

Syntax GPALIB_DECL GPA_Status GPA_GetSampleFloat32 (gpa_uint32 sessionID,
gpa_uint32 sampleID, gpa_uint32 counterIndex, gpa_float32 * result)

Description This function blocks further processing until the value is available. Use GPA_IsSampleReady for
no blocking.

Parameters sessionID The session identifier with the sample for which to retrieve the result.

sampleID The identifier of the sample for which to get the result.

counterIndex The counter index for which to get the result.

result The counter result upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an available
session.

GPA_STATUS_ERROR_NOT_ENABLED: The specified counterIndex does not identify an enabled
counter.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied counterIndex does not identify an
available counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied result parameter is null.

GPA_STATUS_ERROR_COUNTER_NOT_OF_SPECIFIED_TYPE: The supplied counterIndex identifies a
counter that is not a gpa_float32.

GPA_STATUS_OK: On success.

26 of 34 AMD GPU Performance API

Get a Sample of Type 64-bit Float

Syntax GPALIB_DECL GPA_Status GPA_GetSampleFloat64 (gpa_uint32 sessionID,
gpa_uint32 sampleID, gpa_uint32 counterIndex, gpa_float64 * result)

Description This function blocks further processing until the value is available. Use GPA_IsSampleReady for
no blocking.

Parameters sessionID The session identifier with the sample for which to retrieve the result.

sampleID The identifier of the sample for which to get the result.

counterIndex The counter index for which to get the result.

result The value to contain the counter result upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an available
session.

GPA_STATUS_ERROR_NOT_ENABLED: The specified counterIndex does not identify an enabled
counter.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied counterIndex does not identify an
available counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied result parameter is null.

GPA_STATUS_ERROR_COUNTER_NOT_OF_SPECIFIED_TYPE: The supplied counterIndex identifies a
counter that is not a gpa_float64.

GPA_STATUS_OK: On success.

AMD GPU Performance API 27 of 34

Get a Sample of Type 32-bit Unsigned Integer

Syntax GPALIB_DECL GPA_Status GPA_GetSampleUInt32 (gpa_uint32 sessionID,
gpa_uint32 sampleID, gpa_uint32 counterIndex, gpa_uint32 * result)

Description This function blocks further processing until the value is available. Use GPA_IsSampleReady to
not block further processing.

Parameters sessionID The session identifier with the sample for which to retrieve the result.

sampleID The identifier of the sample for which to get the result.

counterIndex The counter index for which to get the result.

result The value to contain the counter result upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an available
session.

GPA_STATUS_ERROR_NOT_ENABLED: The specified counterIndex does not identify an enabled
counter.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied counterIndex does not identify an
available counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied result parameter is null.

GPA_STATUS_ERROR_COUNTER_NOT_OF_SPECIFIED_TYPE: The supplied counterIndex identifies a
counter that is not a gpa_uint32.

GPA_STATUS_OK: On success.

28 of 34 AMD GPU Performance API

Get a Sample of Type 64-bit Unsigned Integer

Syntax GPALIB_DECL GPA_Status GPA_GetSampleUInt64 (gpa_uint32 sessionID,
gpa_uint32 sampleID, gpa_uint32 counterID, gpa_uint64 * result)

Description This function blocks further processing until the value is available. Use GPA_IsSampleReady
to not block.

Parameters sessionID The session identifier with the sample for which to retrieve the result.

sampleID The counter index for which to get the result.

counterID The identifier of the sample for which to get the result.

result The value to contain the counter result upon successful execution.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an
available session.

GPA_STATUS_ERROR_NOT_ENABLED: The specified counterIndex does not identify an enabled
counter.

GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied counterIndex does not identify an
available counter.

GPA_STATUS_ERROR_NULL_POINTER: The supplied result parameter is null.

GPA_STATUS_ERROR_COUNTER_NOT_OF_SPECIFIED_TYPE: The supplied counterIndex identifies
a counter that is not a gpa_uint64.

GPA_STATUS_OK: On success.

Get a String Version of the Status Value

Syntax GPALIB_DECL const char* GPA_GetStatusAsStr(GPA_Status status)

Description This converts the status into a string to print in a log file.

Parameters status The status for which to get a string value.

Returns A string version of the status value, or Unknown Error if an unrecognized value is supplied.
Does not return NULL.

AMD GPU Performance API 29 of 34

Get a String with the Name of the Specified Counter Data Type

Syntax GPALIB_DECL GPA_Status GPA_GetTypeAsStr (GPA_CounterType counterType,
const char ** typeStr)

Description This indicates the frequency that the value could change (different from the data type of the
counter).

Parameters counterType The counter type to get the string for.

typeStr The to contain a reference to the name of the counter type.

Returns GPA_STATUS_ERROR_NOT_FOUND: An invalid counterType parameter was supplied.

GPA_STATUS_ERROR_NULL_POINTER: The supplied typeStr parameter is null.

GPA_STATUS_OK: On success.

Get a String with the Name of the Specified Counter Usage Type

Syntax GPALIB_DECL GPA_Status GPA_GetUsageTypeAsStr (
GPA_CounterType counterUsageType, const char **)

Description Typically used to display counters along with their usage (for example, counterUsageType of
GPA_USAGE_TYPE_PERCENTAGE returns “percentage.”

Parameters counterUsageType The usage type for which to get the string.

usageTypeStr The value set to contain a reference to the name of the counter usage type.

Returns GPA_STATUS_ERROR_NOT_FOUND: An invalid counterUsageType parameter was supplied.

GPA_STATUS_ERROR_NULL_POINTER: The supplied usageTypeStr parameter is null.

GPA_STATUS_OK: On success.

Check if a Counter is Enabled

Syntax GPALIB_DECL GPA_Status GPA_IsCounterEnabled (gpa_uint32 counterIndex)

Description Indicates if the specified counter is enabled.

Parameter counterIndex The index of the counter. Must lie between 0 and
(GPA_GetNumCounters result - 1), inclusive.

Returns GPA_STATUS_ERROR_INDEX_OUT_OF_RANGE: The supplied counterIndex does not identify an
available counter.

GPA_STATUS_ERROR_NOT_FOUND: The counter is not enabled.

GPA_STATUS_OK: On success.

30 of 34 AMD GPU Performance API

Initialize the GPUPerfAPI for Counter Access

Syntax GPALIB_DECL GPA_Status GPA_Initialize ()

Description To access counters when using DirectX 10 or 11, the UAC may have to be disabled and your
application must be set to run with administrator privileges.

Returns GPA_STATUS_FAILED: An internal error occurred. UAC or administrator privileges can be the
cause.

GPA_STATUS_OK: On success.

Determine if an Individual Sample Result is Available

Syntax GPALIB_DECL GPA_Status GPA_IsSampleReady (bool * readyResult,
gpa_uint32 sessionID, gpa_uint32 sampleID)

Description After a sampling session, results may be available immediately or take time to become
available. This function indicates when a sample can be read. The function does not block
further processing, permitting periodic polling. To block further processing until a sample is
ready, use a GetSample* function instead. It can be more efficient to determine if the data of
an entire session is available by using GPA_IsSessionReady.

Parameters ReadyResult The value that contains the result of the ready sample. True if ready.

sessionID The session containing the sample to determine availability.

sampleID The sample identifier of the sample for which to query availability.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied readyResult parameter is null.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an
available session.

GPA_STATUS_ERROR_SAMPLE_NOT_FOUND_IN_ALL_PASSES: The requested sampleID is not
available in all the passes. There can be a different number of samples in the passes of a
multi-pass profile.

GPA_STATUS_OK: On success.

AMD GPU Performance API 31 of 34

Determine if All Samples within a Session are Available

Syntax GPALIB_DECL GPA_Status GPA_IsSessionReady (bool * readyResult,
gpa_uint32 sessionID)

Description After a sampling session, results may be available immediately or take time to become
available. This function indicates when the results of a session can be read. The function does
not block further processing, permitting periodic polling. To block further processing until a
sample is ready, use a GetSample* function.

Parameters ReadyResult The value that contains the result of the ready session. True if ready.

sessionID The session for which to determine availability.

Returns GPA_STATUS_ERROR_COUNTERS_NOT_OPEN: GPA_OpenContext must be called before this call to
initialize the counters.

GPA_STATUS_ERROR_NULL_POINTER: The supplied readyResult parameter is null.

GPA_STATUS_ERROR_SESSION_NOT_FOUND: The supplied sessionID does not identify an
available session.

GPA_STATUS_OK: On success.

Open the Counters in the Specified Context

Syntax GPALIB_DECL GPA_Status GPA_OpenContext (void * context)

Description Opens the counters in the specified context for reading. Call this function after
GPA_Initialize() and after the rendering / compute context has been created.

Parameter context The context for which to open counters. Typically, a device pointer or handle to
a rendering context.

Returns GPA_STATUS_ERROR_NULL_POINTER: The supplied context parameter is null.

GPA_STATUS_ERROR_COUNTERS_ALREADY_OPEN: The counters are already open and do not
need to be opened again.

GPA_STATUS_ERROR_FAILED: An internal error occurred while trying to open the counters.

GPA_STATUS_ERROR_HARDWARE_NOT_SUPPORTED: The current hardware is not supported by
GPU Performance API.

GPA_STATUS_OK: On success.

32 of 34 AMD GPU Performance API

7 Utility Function
The following is an example of how to read data back from the completed session, as well as
how to save the data to a comma-separated value file (.csv).

#pragma warning(disable : 4996)

/// Given a sessionID, query the counter values and save them to a file
void WriteSession(gpa_uint32 currentWaitSessionID, const char* filename)
{
 static bool doneHeadings = false;

 gpa_uint32 count;
 GPA_GetEnabledCount(&count);

 FILE* f;

 if (!doneHeadings)
 {
 const char* name;

 f = fopen(filename, "w");
 assert(f);

 fprintf(f, "Identifier, ");

 for (gpa_uint32 counter = 0 ; counter < count ; counter++)
 {
 gpa_uint32 enabledCounterIndex;
 GPA_GetEnabledIndex(counter, &enabledCounterIndex);
 GPA_GetCounterName(enabledCounterIndex, &name);

 fprintf(f, "%s, ", name);
 }

 fprintf(f, "\n");

 fclose(f);

 doneHeadings = true;
 }

 f = fopen(filename, "a+");

 assert(f);

 gpa_uint32 sampleCount;
 GPA_GetSampleCount(currentWaitSessionID, &sampleCount);

 for (gpa_uint32 sample = 0 ; sample < sampleCount ; sample++)
 {
 fprintf(f, "session: %d; sample: %d, ", currentWaitSessionID,
 sample);

AMD GPU Performance API 33 of 34

 for (gpa_uint32 counter = 0 ; counter < count ; counter++)
 {
 gpa_uint32 enabledCounterIndex;
 GPA_GetEnabledIndex(counter, &enabledCounterIndex);
 GPA_Type type;
 GPA_GetCounterDataType(enabledCounterIndex, &type);

 if (type == GPA_TYPE_UINT32)
 {
 gpa_uint32 value;
 GPA_GetSampleUInt32(currentWaitSessionID,
 sample, enabledCounterIndex, &value);

 fprintf(f, "%u,", value);
 }
 else if (type == GPA_TYPE_UINT64)
 {
 gpa_uint64 value;
 GPA_GetSampleUInt64(currentWaitSessionID,
 sample, enabledCounterIndex, &value);
 fprintf(f, "%I64u,", value);
 }
 else if (type == GPA_TYPE_FLOAT32)
 {
 gpa_float32 value;
 GPA_GetSampleFloat32(currentWaitSessionID,
 sample, enabledCounterIndex, &value);
 fprintf(f, "%f,", value);
 }
 else if (type == GPA_TYPE_FLOAT64)
 {
 gpa_float64 value;
 GPA_GetSampleFloat64(currentWaitSessionID,
 sample, enabledCounterIndex, &value);
 fprintf(f, "%f,", value);
 }
 else
 {
 assert(false);
 }
 }

 fprintf(f, "\n");
 }

 fclose(f);
}

#pragma warning(default : 4996)

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos.Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

34 of 34 AMD GPU Performance API

For GPU Developer Tools:
URL: http://developer.amd.com/GPU
Questions: gputools.support@amd.com

	AMD GPU Performance API
	1 Introduction
	2 Usage
	2.1 Static Library
	2.2 Dynamically Loaded Library
	2.3 Shared Object Library
	2.4 Initializing the GPUPerfAPI
	2.5 Obtaining Available Counters
	2.6 Retrieving Information About the Counters
	2.7 Enabling Counters
	2.8 Disabling Counters
	2.9 Multi-Pass Profiling
	2.10 Sampling Counters
	2.11 Counter Results
	2.12 Result Buffering
	2.13 Closing GPUPerfAPI

	3 Example Code
	3.1 Startup
	3.2 Render Loop
	3.3 On Exit

	4 Counter Groups
	5 Counter Descriptions
	6 API Functions
	7 Utility Function

